
“Never do anything that is a waste of
time – and be prepared to wage

long, tedious wars over this principle,”
said Michael O’Connor, project manager
at Trimble Navigation in Christchurch,
New Zealand. This product group at
Trimble is typical of the homegrown
approach to agile software development
methodologies.

While interest in agile methodologies
has blossomed in the past two years, its
roots go back more than a decade. Teams
using early versions of Scrum, Dynamic
Systems Development Methodology
(DSDM), and adaptive software develop-
ment (ASD) were delivering successful
projects in the early- to mid-1990s.

This article attempts to answer the
question, “What constitutes agile software
development?” Because of the breadth of
agile approaches and the people who prac-
tice them, this is not as easy a question to
answer as one might expect. I will try to
answer this question by first focusing on
the sweet-spot problem domain for agile
approaches. Then I will delve into the
three dimensions that I refer to as agile
ecosystems: barely sufficient methodology,
collaborative values, and chaordic per-
spective. Finally, I will examine several of
these agile ecosystems.

The Agile Problem
Domain: Fitting the
Process to the Project
All problems are different and require dif-
ferent strategies. While battlefield com-
manders plan extensively, they realize that
plans are just a beginning; probing enemy
defenses (creating change) and responding
to enemy actions (responding to change)
are more important. Battlefield command-
ers succeed by defeating the enemy (the
mission), not conforming to a plan.

I cannot imagine a battlefield com-
mander saying, “We lost the battle, but by

golly, we were successful because we fol-
lowed our plan to the letter.” Battlefields
are messy, turbulent, uncertain, and full of
change. No battlefield commander would
say, “If we just plan this battle long and
hard enough, and put repeatable process-
es in place, we can eliminate change early
in the battle and not have to deal with it
later on.”

A growing number of software proj-
ects operate in the equivalent of a battle
zone – they are extreme projects. This is
where agile approaches shine. Project
teams operating in this zone attempt to
utilize leading or bleeding-edge technolo-

gies, respond to erratic requirements
changes, and deliver products quickly.
Projects may have a relatively clear mis-
sion, but the specific requirements can be
volatile and evolving as customers and
development teams alike explore the
unknown. These projects, which I call
high-exploration factor projects, do not
succumb to rigorous, plan-driven meth-
ods.

The critical issues with high-explo-
ration factor projects are as follows: first,
identifying them; second, managing them
in a different way; and third, measuring
their success differently. Just as winning is
the primary measure of success for a bat-
tlefield commander, delivering customer
value (however the customer defines it)

measures success for the agile project
manager. Conformance to plan has little
meaning in either case. If we want to be
agile, we have to reward agility.

There is, however, a critical difference
between managing a battle and managing
warehouse logistics. Battlefields are man-
aged by constant monitoring of condi-
tions and rapid course alterations – by
empirical processes. Adapting to changing
conditions is vital. Conversely, managing
warehouse logistics is a process that can
be described by calculations involving
materials on hand, deliveries, and ship-
ments; managing can be described as a
defined process, one that involves a relatively
high degree of predictability and algorith-
mic precision. Many manufacturing plants
operate as defined processes.

The concepts and assumptions behind
empirical and defined processes are funda-
mentally and irreconcilably different. The
practices of agile software development –
short iterations, continuous testing, self-
organizing teams, constant collaboration
(daily integration meetings and pair pro-
gramming for example), and frequent re-
planning based on current reality (rather
than six-month- old plans) – are all geared
to the understanding of software develop-
ment as an empirical process.

On the other hand, the fundamental
basis of the Capability Maturity Model®

(CMM®) and CMM IntegrationSM

(CMMISM) is a belief in software develop-
ment as a defined process. As such, tasks
can be defined in detail, algorithms can be
defined, results can be accurately meas-
ured, and measured variations can be used
to refine the processes until they are
repeatable within very close tolerances.

For projects with any degree of explo-
ration at all, agile developers just do not
believe these assumptions are valid. This is
a deep, fundamental divide – and not one
that can be reconciled to some comfort-
able middle ground. It is part of having a
chaordic (meaning a combination of
chaos and order as coined by Dee Hock,
founder and former CEO of Visa

Agile Software Development

4 CROSSTALK The Journal of Defense Software Engineering October 2002

What Is Agile Software Development?1

Jim Highsmith
Cutter Consortium

In the past two years, the ideas of “agile software development,” which encompasses individual methodologies such as Crystal
methods, eXtreme Programming, feature-driven development, and adaptive software development, are being increasingly
applied and are causing considerable debate. This article attempts to answer the fundamental question on many people’s minds:
What is agile software development?

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

“Projects may have a
relatively clear mission,

but the specific
requirements can be
volatile and evolving
as customers and

development teams alike
explore the unknown.”

October 2002 www.stsc.hill.af.mil 5

What Is Agile Software Development?

International) perspective on the world as
described in the next section.

While agile practices – refactoring,
iterative feature-driven cycles, customer
focus groups – are applicable to nearly any
project, I believe the agile sweet spot is this
exploratory projects problem category. The
more volatile the requirements and the
more experimental the technology, the
more agile approaches improve the odds
of success.

The Agile Ecosystem:
Chaordic, Collaborative,
and Streamlined
The agile movement covers a broader set
of issues than the word methodology con-
notes, so I use the word ecosystem to include
the three characteristics that define agile
development: a chaordic perspective, col-
laborative values and principles, and bare-
ly sufficient methodology. A chaordic per-
spective arises from recognition and
acceptance of increasing levels of unpre-
dictability in our turbulent economy.

Two concrete ramifications of trying
to manage in an unpredictable environ-
ment are that while goals are achievable,
project details are often unpredictable, and
that the foundation of many process-driv-
en approaches (the goal of repeatable
processes) is unattainable. In company
after company, I have found successful
projects that met the customer’s vision,
but in the end, looked nothing like the
original plan.

Furthermore, truly repeatable process-
es would be almost mechanical in nature,
and no mechanical process could possibly
react to the infinite variety of variations
that software projects encounter. The rea-
son many projects attain their goals has lit-
tle to do with repeatable processes and
much to do with the skill and adaptability
of the people who are working on the
project.

Hock’s chaordic style is similar to what
I call leadership-collaboration or adaptive
management, which is about creating an
environment with the requisite variety to
meet the challenge of extreme projects,
particularly the challenge of high change.

Agile managers understand that
demanding certainty in the face of uncer-
tainty is dysfunctional. They set goals and
constraints that provide boundaries within
which creativity and innovation can flour-
ish. They are macromanagers rather than
micromanagers2.

While an entrepreneurial Silicon Valley
company has one culture, a space shuttle
avionics team has another. One of the
biggest problems in implementing soft-

ware development methodologies over the
years has been the attempted mismatch of
culture and methodology. Rather than rec-
ognizing the inherent differences between
people, project teams, and organizations,
we denigrate those who have different cul-
tures by labeling them unprofessional,
immature, or undisciplined. Or conversely,
we label them bureaucratic, rigid, and
closed-minded. For example, you can call
a well-oiled extreme programming team a
lot of things, but after watching them
practice test-first development, pair pro-
gramming, constant refactoring, and sim-
ple design, the last thing you can call them
is undisciplined, immature, or unprofes-
sional.

The second characteristic of agile
development is collaborative values and
principles. Agile and rigorous organiza-
tions view people, and how to improve
their performance, differently. Rigorous
methodologies are designed to standardize
people to the process, while agile process-
es are designed to capitalize on each indi-
vidual’s and each team’s unique strengths:
they adapt the process to the people3.

Agile organizations focus on building
individual skills and on fostering a high
degree of interaction among team mem-
bers and the project’s customers. Agilists
believe that with today’s complex projects,
understanding comes more from face-to-
face interaction than from documentation.
Agilists do not believe that a reliance on
heavy processes makes up for lack of skill,
talent, and knowledge.

The third aspect of agile ecosystems is
the concept of a barely sufficient methodol-
ogy that attempts to answer the question
of how much structure is enough. To be
agile, one must balance flexibility and
structure, and barely sufficient does not
mean insufficient. Bare sufficiency
reduces costs through streamlining but
even more importantly, it incorporates the
chaordic perspective that creativity and
innovation occur in a slightly messy envi-
ronment, not a primarily structured one.
Too many organizations operate on the
unspoken assumption that “if a little
process is good, then lots of process will
be better.”

Concepts drive action and behavior.
Software inspections, or any other soft-
ware engineering technique, will be imple-
mented differently depending upon one’s
underlying conceptual framework. The
underlying conceptual frameworks behind
agile development and the CMM are dif-
ferent and will therefore drive organiza-
tions to different behaviors. The really
important questions are about to what
kind of core capabilities one’s conceptual

foundation leads. These are not always
easy questions to answer, and organiza-
tions will have different answers for dif-
ferent stages in their evolution and for dif-
ferent projects in their portfolio.

An Agile Case Story
Jeff De Luca, project director of
Nebulon, an information technology con-
sulting firm in Melbourne, Australia,
offers an example of an agile methodolo-
gy’s success using feature-driven develop-
ment (FDD). De Luca’s project was a
complex commercial lending application
for a large Singapore bank utilizing 50
people for 15 months (after a short initial-
ization period). I tracked De Luca down
looking for an FDD case story for my
book, and subsequently spent several
hours on the phone and exchanged many
e-mails with him.

Previously, the Singapore lending proj-
ect had been a colossal failure. Prior to De
Luca’s involvement in the project, a large,
well-known systems integration firm had
spent two years working on the project
and finally declared it undoable. Its deliv-
erables included the following: 3,500
pages of use cases, an object model with
hundreds of classes, thousands of attrib-
utes (but no methods), and, of course, no
code. The project – an extensive commer-
cial, corporate, and consumer lending sys-
tem – incorporated a broad range of lend-
ing instruments (from credit cards to large
multi-bank corporate loans) and a breadth
of lending functions (from prospecting to
implementation to back-office monitor-
ing). “The scope was really too big,” said
De Luca.

FDD arose, in name at least, in 1997-
98 when Nebulon took over the Singapore
project. De Luca had been using a stream-
lined, light-process framework for many
years. Peter Coad, who was brought in to
develop the object model for the project,
had been advocating very granular, fea-
ture-oriented development but had not
embedded it in any particular process
model. These two threads came together
on this project to fashion what was
dubbed FDD.

Less than two months into the new
project, De Luca’s team was producing
demonstrable features for the client. The
team spent about a month working on the
overall object model (the original model
and what De Luca refers to as the previ-
ous team’s useless cases were trashed).
They spent another couple of weeks
working on the feature decomposition and
short iteration planning. Finally, to
demonstrate the project’s viability to a
once-burned and skeptical client, De Luca

Agile Software Development

6 CROSSTALK The Journal of Defense Software Engineering October 2002

and his team built a portion of the rela-
tionship management application as a
proof of concept. From that point on,
with about four months elapsed, they
staffed to 50 people and delivered approx-
imately 2,000 features in 15 months. The
project was completed significantly under
budget, and the client, the CEO of the
bank, wrote a glowing letter about the
success of the project.

While talking with De Luca, a couple
of things struck me about this project.
Certainly the FDD process contributed to
the project’s success, but when I asked De
Luca what made the FDD successful, his
first response was that the overriding
assumption behind the FDD is that it
embraces and accepts software develop-
ment as a decidedly human activity. The
key, he said, is having good people – good
domain experts, good developers, good
chief programmers. No process makes up
for a lack of talent and skill.

My guess is that even if the first ven-
dor’s staff had used FDD as a process
model, they would not have been success-
ful because they just did not have the
appropriate level of technical and project
management talent. However, had they
been using a FDD-like agile process, their
inability to complete the project might
have surfaced in less than two years. This
is a clear example of why working code is
the ultimate arbiter of real progress. In the
end, thousands of use cases and hundreds
of object model elements did not prove
real progress.

A Sampler of Agile
Approaches
There are a growing number of agile
methodologies, or agile software develop-
ment ecosystems (ASDEs), as I prefer to
label them, and a number of agile prac-
tices such as Scott Ambler’s agile modeling
[1]. The core set of these includes lean
development (LD), ASD, Scrum, eXtreme
Programming (XP), Crystal methods,
FDD, and DSDM. Authors of all of these
approaches (except LD) participated in
writing the Agile Software Development
Manifesto [2] and so its principles form a
common bond among practitioners of
these approaches. While individual prac-
tices are varied, they fall into six general
categories:
• Visioning. A good visioning practice

helps assure that agile projects remain
focused on key business values (for
example, ASD’s product visioning ses-
sion).

• Project initiation. A project’s overall
scope, objectives, constraints, clients,

risks, etc. should be briefly document-
ed (for example, ASD’s one-page proj-
ect data sheet).

• Short, iterative, feature-driven, time-
boxed development cycles. Explora-
tion should be done in definitive, cus-
tomer-relevant chunks (for example,
FDD’s feature planning).

• Constant feedback. Exploratory
processes require constant feedback to
stay on track (for example, Scrum’s
short daily meetings and XP’s pair pro-
gramming).

• Customer involvement. Focusing on
business value requires constant inter-
action between customers and devel-
opers (for example, DSDM’s facilitat-
ed workshops and ASD’s customer
focus groups).

• Technical excellence. Creating and
maintaining a technically excellent
product makes a major contribution to
creating business value today and in
the future (for example, XP’s refactor-
ing).
Some agile approaches focus more

heavily on project management and col-
laboration practices (ASD, Scrum, and
DSDM), while others such as XP focus on
software development practices, although
all the approaches touch the six key prac-
tice areas. The rest of this section delves
into four of these approaches, illustrating
different aspects of each.

Lean Development
The most strategy-oriented ASDE is also
the least known: ITABHI, Inc. President
Bob Charette’s LD was derived from the
principles of lean production used during
the restructuring of the Japanese automo-
bile manufacturing industry in the 1980s.
In LD, Charette extends traditional
methodology’s view of change from a risk
of loss to be controlled with restrictive
management practices to a view of change
as producing opportunities to be pursued
using risk entrepreneurship. LD has been
used successfully on a number of large
telecommunications projects in Europe.

The goals of LD are completion in
one-third the time, within one-third the
budget, and with one-third the defect rate.
While most other ASDEs are tactical in
nature, Charette thinks that the major
changes required to become agile must be
initiated from the top of the organization.
Organizational strategy becomes the con-
text within which agile processes can
operate effectively. Without this strategic
piece, agile development – as all those
who have tried to implement ASDEs in
organizations can testify – is shunted aside
by the organizational forces that seek

equilibrium.
LD is the operational piece in a three-

tiered approach4 that leads to change-tol-
erant businesses. It provides a delivery
mechanism for implementing risk entre-
preneurship. The key in business, accord-
ing to Charette, is that the opportunity for
competitive advantage comes from being
more agile than the competitors in one’s
market.

LD’s risk entrepreneurship enables
companies to turn risk into opportunity.
Charette defines change tolerance as “the
ability of an organization to continue to
operate effectively in the face of high mar-
ket turbulence.” A change-tolerant busi-
ness not only responds to changes in the
marketplace, but also causes changes that
keep competitors off balance. “Most soft-
ware systems are not agile, but fragile,”
said Charette. “Furthermore, they act as
brakes on competitiveness.” Every busi-
ness must deal with change by building a
change-tolerant organization that can
impose change on competitors.

Charettes’s work sends three key mes-
sages to agile developers and business
stakeholders in information technology.
First, the wide adoption of ASDEs will
require strategic selling at senior levels
within organizations. Second, the strategic
message that will sell ASDEs is the ability
to pluck opportunity from fast-moving,
high-risk exploration situations. And third,
proponents of ASDEs must understand
and communicate to their customers the
risks associated with agile approaches and,
therefore, the situations in which they are
and are not appropriate.

LD is as much a management chal-
lenge as a set of practices. Charette said,
“You have to set the bar high enough to
force rethinking traditional practices. LD
initiatives focus on accelerating the speed
of delivering software applications, but
not at the expense of higher cost or defect
rates. These three goals need to be
achieved concurrently, or it isn’t LD.”

Adaptive Software Development
In 1992, I started working on a short
interval, iterative, rapid application devel-
opment process that evolved into ASD.
The original process, developed in con-
junction with colleague Sam Bayer, was
used on projects in companies from Wall
Street brokerage houses to airlines to
telecommunications firms. During the
next several years, Sam and I (together and
separately) successfully delivered more
than 100 projects using these practices.
During the early to mid-1990s, I also
worked with software companies that
were using similar techniques on very

What Is Agile Software Development?

October 2002 www.stsc.hill.af.mil 7

large projects.
In the mid-1990s, my interest in com-

plex adaptive systems began to add a con-
ceptual background to the team aspects of
the practices and was the catalyst for the
name change to ASD. Complexity theory
helps us understand unpredictability and
that our inability to predict does not imply
an inability to make progress. ASD works
with change rather than fighting against it.
In order to thrive in turbulent environ-
ments, we must have practices that
embrace and respond to change – prac-
tices that are adaptable. Even more impor-
tantly, we need people, teams, and organi-
zations that are adaptable and agile.

The practices of ASD are driven by a
belief in continuous adaptation – a differ-
ent philosophy and a different life cycle –
geared to accepting continuous change as
the norm. In ASD, the static plan-design-
build life cycle is replaced by a dynamic
speculate-collaborate-learn life cycle. It is
a life cycle dedicated to continuous learn-
ing and oriented to change, re-evaluation,
peering into an uncertain future, and
intense collaboration among developers,
management, and customers.

A Change-Oriented Life Cycle
A waterfall development life cycle, based
on an assumption of a relatively stable
business environment, becomes over-
whelmed by high change. Planning is one
of the most difficult concepts for engi-
neers and managers to re-examine. For
those raised on the science of reduction-
ism (reducing everything to its component
parts) and the near-religious belief that
careful planning followed by rigorous
engineering execution produces the
desired results (we are in control), the idea
that there is no way to “do it right the first
time” remains foreign. The word plan,
when used in most organizations, indi-
cates a reasonably high degree of certain-
ty about the desired result. The implicit
and explicit goal of conformance to plan
restricts a manager’s ability to steer the
project in innovative directions.

Speculation, the first conceptual con-
cept, gives us room to explore, to make
clear the realization that we are unsure and
to deviate from plans without fear. It does
not mean that planning is obsolete, just
that planning is acknowledgeably tenuous.
It means we have to keep delivery itera-
tions short and encourage iteration. A
team that speculates does not abandon
planning; it acknowledges the reality of
uncertainty. Speculation recognizes the
uncertain nature of complex problems
and encourages exploration and experi-
mentation. We can finally admit that we do

not know everything.
The second conceptual component of

ASD is collaboration. Complex applica-
tions are not built; they evolve. Complex
applications require that a large volume of
information is collected, analyzed, and
applied to the problem – a much larger
volume than any individual can handle by
himself or herself. Although there is
always room for improvement, most soft-
ware developers are reasonably proficient
in analysis, programming, testing, and sim-
ilar skills. But turbulent environments are
defined in part by high rates of informa-
tion flow and diverse knowledge require-
ments. Building an e-commerce site
requires greater diversity of both technol-
ogy and business knowledge than the typ-
ical project of five to 10 years ago. In this
high-information-flow environment, in
which one person or small group cannot

possibly know it all, collaboration skills (the
ability to work jointly to produce results,
share knowledge, or make decisions) are
paramount.

Once we admit to ourselves that we
are fallible, then learning practices – the
learn part of the life cycle – becomes vital
for success. Learning is the third compo-
nent in the speculate-collaborate-learn life
cycle. We have to test our knowledge con-
stantly, using practices like project retro-
spectives and customer focus groups.
Furthermore, reviews should be done
after each iteration rather than waiting
until the end of the project.

An ASD life cycle has six basic charac-
teristics: mission-focused, feature-based,
iterative, time-boxed, risk-driven, and
change-tolerant. For many projects, the
requirements may be fuzzy in the begin-
ning, but the overall mission that guides
the team is well articulated. A mission
provides boundaries rather than a fixed
destination. Without a good mission and a
constant mission refinement practice, iter-
ative life cycles become oscillating life
cycles – swinging back and forth with no
progress.

The ASD life cycle focuses on results,
not tasks, and the results are identified as
application features. Features are the cus-
tomer functionality that is to be developed
during iteration.

The practice of time boxing, or setting
fixed delivery times for iterations and
projects, has been abused by many who
use time deadlines incorrectly. Time dead-
lines used to bludgeon staff into long
hours or to cut corners on quality are a
form of tyranny; they undermine a collab-
orative environment. It took several years
of managing ASD projects before I real-
ized that time boxing was minimally about
time – it was really about focusing and
forcing hard trade-off decisions. In an
uncertain environment in which change
rates are high, there needs to be a period-
ic forcing function to get work finished.

As in Barry Boehm’s spiral develop-
ment model [3], analyzing the critical risks
drives the plans for adaptive iterations.
ASD is also change-tolerant, not viewing
change as a problem but seeing the ability
to incorporate change as a competitive
advantage.

eXtreme Programming
XP, to most aficionados, was developed by
Kent Beck, Ward Cunningham, and Ron
Jeffries and has, to date, clearly garnered
the most interest of any of the agile
approaches. XP preaches the values of
community, simplicity, feedback, and
courage and is defined, at least in part, by
its 12 practices: the planning game, small
releases, metaphor, simple design, refac-
toring, test-first development, pair pro-
gramming, collective ownership, continu-
ous integration, 40-hour week, on-site
customer, and coding standards.

There has been so much written about
XP’s practices that another rehash seems
less important than discussing XP’s
impact on software development. The
interest in XP generally comes from the
bottom up, from developers and testers
tired of burdensome processes, documen-
tation, metrics, and formality. These indi-
viduals are not abandoning discipline, but
excessive formality that is often mistaken
for discipline. They are finding new ways
to deliver high-quality software faster and
more flexibly.

XP and other agile approaches are
forcing organizations to re-examine
whether their processes are adding any
value to their organizations. Well over 400
individuals have signed the Agile Software
Development Manifesto Web page, avail-
able at: <www.agilealliance.com>. These
individuals reaffirm their desire to deliver
high-quality software without the burdens

“A change-tolerant
business not only

responds to changes
in the marketplace,

but also causes
changes that keep

competitors off balance.”

Agile Software Development

8 CROSSTALK The Journal of Defense Software Engineering October 2002

of bureaucracy.
Other important contributions of XP

proponents are their views on reducing
the cost of change during a software’s life
and their emphasis on technical excel-
lence through refactoring and test-first
development. XP provides a system of
dynamic practices, whose integrity as a
holistic unit has been proven.

Some people think extreme is too
extreme, that XP would be more appeal-
ing with a more moderate name. I don’t
think many people would get excited
about a book on moderate programming.
New markets, new technologies, new
ideas aren’t forged from moderation, but
from radically different ideas and the
courage to challenge the status quo. XP
has led the way.

Dynamic Systems
Development Method
The DSDM was developed in the United
Kingdom in the mid-1990s. It is an out-
growth of, and extension to, rapid appli-
cation development practices. The
DSDM boasts the best-supported train-
ing and documentation of any ASDE, at
least in Europe.

Each of the major phases of the
DSDM development process – functional
model iteration, design-and-build itera-
tion, and implementation – are them-
selves iterative processes. The DSDM’s
use of three interactive iterative models
and time boxes can be used to construct
very flexible project plans.

The functional model iteration is a
process of gathering and prototyping
functional requirements based on an ini-
tial list of prioritized requirements.
Nonfunctional requirements are also
specified during this phase. The design-
and-build iteration refines the prototypes
to meet all requirements (functional and
nonfunctional) and engineers the soft-
ware to meet those requirements. One set
of business functions (features) may go
through both functional model and
design-and-build iterations during a time
box, and then another set of features goes
through the same processes in a second
time box. Implementation deploys the
system into a user’s environment.

The DSDM also addresses other
issues common to ASDEs. First, it explic-
itly states the difference between the
DSDM and traditional methodologies
with respect to flexible requirements. The
traditional view, according to the DSDM
manual, is that functionality stays relative-
ly fixed (after it is established in the origi-
nal requirements specifications), while
time and resources are allowed to vary.

The DSDM reverses this viewpoint,
allowing the functionality to vary over the
life of the project as new things are
learned. However, while functionality is
allowed to vary, control is maintained by
using time boxes.

The DSDM also addresses the issues
of documentation – or lack thereof – a
constant criticism of ASDEs. Because
one of the principles of the DSDM
relates to the importance of collabora-
tion, it uses prototypes rather than
lengthy documents to capture informa-
tion. The DSDM recommends only 15
work products from its five major devel-
opment phases, and several of these are
prototypes. There is an interesting com-
ment in the DSDM white paper on con-
tracting:

The mere presence of a detailed
specification may act to the detri-
ment of cooperation between the
parties, encouraging both parties
to hide behind the specification
rather than seeking mutual benefi-
cial solutions. [4]

With respect to work products, the
DSDM, unlike rigorous methodologies,
does not offer detailed documentation
formats for its 15 defined work products.
Instead, the DSDM work product guide-
lines offer a brief description, a listing of
the purposes, and a half-dozen or so qual-
ity criteria questions for each work prod-
uct.

Another area that the DSDM focuses
on is establishing and managing the prop-
er culture for a project. The manual
describes, for example, the different
emphasis of project managers and points
out how difficult the transition can be for
project managers steeped in traditional
approaches. A passage from the DSDM
manual illustrates this point:

A traditional project manager will
normally focus on agreeing a
detailed contract with customers
about the totality of the system to
be delivered along with the costs
and time scales. In a DSDM proj-
ect, the project manager is focused
on setting up a collaborative rela-
tionship with the customers. [4]

The focal point for a DSDM project
manager shifts from the traditional
emphasis on tasks and schedules to sus-
taining progress, getting agreement on
requirement priorities, managing cus-
tomer relationships, and supporting the
team culture and motivation.

The Future of Agile
Development
There are fundamental shifts driving
economies, the structure of products that
we build, and the nature of the processes
we use to build products. “These changes
in products, technologies, firms, and mar-
kets are not a passing phenomenon,”
according to Carliss Baldwin, Harvard
Business School professor and Kim Clark,
dean of the Harvard Business School fac-
ulty.

These fundamental changes driven
by powerful forces deep in the eco-
nomic system, forces which more-
over have been at work for many
years ... we must be prepared to dig
deep, for the forces that matter are
rooted in the very nature of things,
and in the processes used to create
them. [5]

In the foreword to “Planning eXtreme
Programming,” Tom DeMarco makes the
analogy between military history and soft-
ware development as each swing from the
relative advantages of armor to those of
mobility. DeMarco says:

In the field of IT, we are just emerg-
ing from a time in which armor
(process) has been king. And now
we are moving into a time when
only mobility matters. [6]

Agile development is not defined by a
small set of practices and techniques.
Agile development defines a strategic
capability, a capability to create and
respond to change, a capability to balance
flexibility and structure, a capability to
draw creativity and innovation out of a
development team, and a capability to lead
organizations through turbulence and
uncertainty.

Agile development does not abandon
structure, but attempts to balance flexibil-
ity and structure – trying to figure out that
delicate balance between chaos and rigidi-
ty. The greater the uncertainty, the faster
the pace of change, and the lower the
probability that success will be found in
structure. Plan-driven methodologies have
a definite place for some problem
domains just as individual practices (con-
figuration management for example) have
a definite place in the most agile of soft-
ware development projects. In a less
volatile era, rigorous processes were appli-
cable for a wide range of projects. In an
era in which traditional management styles
dominated, plan-driven software develop-

What Is Agile Software Development?

October 2002 www.stsc.hill.af.mil 9

ment approaches fit well.
But as Bob Dylan sang, “Times, they

are a-changin’.” Volatility and uncertainty
increasingly defines today’s business, and
even today’s military environment.
Talented technical people want to work in
an organization in which they have more
control over how they work and how they
interact with peers, customers, and man-
agement. Problems are changing, people
are changing, and ideas are changing.
While there are still opportunities for
plan-driven style development and man-
agement, I believe growth lies in being
agile and flexible.

Throughout the last three years, I have
used agile methods with project teams in
India, Canada, Norway, the United States,
New Zealand, Poland, and Australia.
Companies in these countries are strug-
gling with exploratory projects that run
the gamut, including an e-commerce infra-
structure product, a clinical drug-trial
monitoring application, 300,000 lines of
embedded C code in a new cell-phone
chip, a worldwide financial system prod-
uct, a myriad of internal IT applications,
the complete business system for a dot-
com start-up (that is still in business), and
an oil-field geophysical data gathering and
analysis system.

These companies want to be more
agile: They want to create change for their
competitors and respond quickly to mar-
ket conditions. They plan, but they are not
blinded by those plans. They focus on
delivering customer value, not adding up
how many processes they have in place.
They document, but they do not get lost
in piles of paper. They rough out blue-
prints (models), but they concentrate on
creating working software. They focus on
individuals and their skills and on the
intense interaction of development team
members among themselves and with cus-
tomers and management. They deliver
results in a turbulent, messy, ever-chang-
ing, ever-exciting marketplace.◆

References
1. Ambler, Scott. Agile Modeling. New

York: John Wiley, 2002.
2. AgileAlliance. “Agile Software

Development Manifesto.” 13 Feb.
2001 <www.agilemanifesto.org>.

3. Boehm, Barry. “A Spiral Model of
Software Development Enhance-
ment.” IEEE Computer May 1988.

4. DSDM Consortium. Dynamic Sys-
tems Development Method. Version 3.
United Kingdom <www.dsdm.org>.

5. Baldwin, Carliss Y., and Kim B. Clark.
Design Rules – Vol. 1: The Power of

Modularity. Cambridge: The MIT
Press, 2000.

6. Beck, Kent, and Martin Fowler.
Planning eXtreme Programming.
Boston: Addison-Wesley, 2001.

Notes
1. This article is adapted from Jim

Highsmith’s book “Agile Software
Development Ecosystems.” Addison-
Wesley, 2002. (Article quotes and
examples taken from this book.)

2. For additional information, see James
A. Highsmith. Adaptive Software
Development: A Collaborative App-
roach to Managing Complex Systems.
New York: Dorset House, 2000.

3. For extensive research in this area, see
Buckingham, Marcus, and Curt
Coffman. First, Break All the Rules:
What the World’s Greatest Managers
Do Differently. New York: Simon &
Schuster, 1999, and Buckingham,
Marcus and Donald O. Clifton. Now,
Discover Your Strengths. New York:
Simon & Schuster, 2001.

4. The three tiers are Risk Leadership,
Risk Entrepreneurship, and Lean
Development.

About the Author
Jim Highsmith is
director of the Cutter
Consortium’s Agile
Project Management
Practice, author of
“Agile Software Deve-
lopment Ecosystems

(2002)” and “Adaptive Software
Development: A Collaborative App-
roach to Managing Complex Systems
(2000),” and winner of the 2000 Jolt
Award. He has more than 30 years
experience as a consultant, software
developer, manager, and writer. In the
last 10 years, he has worked with infor-
mation technology organizations,
industrial product companies, and
software companies in the United
States, Europe, Canada, South Africa,
Australia, Japan, India, and New
Zealand to help them adapt to the
accelerated pace of development in
increasingly complex, uncertain envi-
ronments.

Cutter Consortium
2288 North Coulter Drive
Flagstaff, AZ 86004
Phone: (781) 648-8700
E-mail: jim@jimhighsmith.com

COMING EVENTS

October 14-16
20th Annual Pacific Northwest
Software Quality Conference

Portland, OR
www.pnsqc.org

November 3-6
3rd Annual Amplifying Your Effectiveness

(AYE) Conference 2002
Phoenix, AZ

www.ayeconference.com

November 4-8
Software Testing Analysis
and Review Conference

Anaheim, CA
www.sqe.com/starwest

November 11-14
National Defense Industrial Association

Denver, CO
www.ndia.org

November 18-21
International Conference on

Software Process Improvement
Washington, DC

www.software-process-institute.com

February 24-27, 2003
Software Engineering Process

Group Conference

Boston, MA
www.sei.cmu.edu/sepg/

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10, 2003
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

